501’2 Vom MGXimum & Minimum
(Extremwertsatz)

Ist die Funktion f(x) auf dem Intervall [a;b] stetig, dann gibt es
Stellen u bzw. v 0O [a;b] mit f(u) < f(x) < f(v) O x O [a:b] .
Man sagt, die Funktion f(x) nimmt in [a;b] einen

grofften (f(v) = Maximum ) und einen kleinsten (f(u) = Minimum )
Funktionswert an.
Wird das Max. oder Min. am Rand des Intervalls angenommen, so

spricht man einem Randmaximum oder Randminimum.
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Zwischenwertsatz

Ist die Funktion f(x) auf dem Intervall
[a.b] stetig,

so gibt es zu jedem Wert
Yo zwischen f(a) und f(b)

mindestens eine Stelle
Xo O [a:b] mit f(xo) = yo .

A  Erlauterung:
Zu yo zwischen f(a) und f(b)

gibt es hier sogar 3 x-Werte.
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Nullstellensatz

Ist die Funktion f(x) auf dem Intervall
[a:b] stetig und
haben f(a) und f(b) verschiedene
Vorzeichen,

so gibt es mindestens eine Stelle
xo O [a;b] mit f(xo) = O .

= dh f(x) besitzt mind. eine Nullstelle

Er\iu’rerung:
A Aufgrund der Voraussetzungen gilt:

Die Funktion besitzt im Intervall [2;b] mindestens eine
(hier: 3) Nullstelle.
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Mittelwertsatz der
Differentialrechnung

Ist die Funktion f(x) auf dem Intervall [a;b] stetig und

differenzierbar auf Ja;b[ ,

dann gibt es mindestens eine Stelle xo O Ja:b[ fiir die gilt:
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Erlauterung
o Lur Sekante durch die Punkte P und Q hat die Funktion f(x)

mit %, [ Ja;b[ mindestens an einer Stelle eine Tangente
ier: 2), die parallel zur Sekante verlauft.
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Satz von Rolle

st die Funktion f(x) auf dem Intervall [a:b] stetig,

fferenzierbar auf ]a;b[ und
ilt zudem f(a) = f(b)

ann gibt es mindestens eine Stelle xo O Ja:b[ fiir die gilt:

A
A

i
it
HEEEREE

5]
gt
]
i
i
i

]
A

£
i

£
HEEE
HEEE
G
i
HEEE
AR
S
2

....
e
Pk
i
25

i
TR |
o
S

£
£
AR
HEEE
]
S
i
R
bt
LR
£

i
£
LS

e
e
S

T
T
A
S,

gt

£

i

£

AEEEE
R
i
R
S T
e
o

i

-]
o
e

SR
i

o A A AT PR
B ]
R R R R e e e R R R R R R e e b R R R R R R e e R R R R e e e e R R R

A Erlauterung
Zur Sexkante durch die Punkte P und Q hat die Funktion f(x)

mit ¥, [ ]a;b[ mindestens an einer Stelle eine horizonzale
Tangente (hier: 2).

f(a) =
f(b) i




b] stetig und

.
e

.b]

:b[

f(x) auf dem Intervall [a

dann ist f(x) auf [a

ion

bar auf Ja

ier

Monotoniesatz
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